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It is assumed that for a quantum system (Q) plus a classical one (C) that are 
in a distant state the actually measurable Hermitian operators are of the form 
A| K bkQk (A is any Hermitian operator for Q, and the decomposition 
~k Ok = 1 of the identity is, after yon Neumann, characteristic for C). This leads 
to Jauch-type macrostates (classes of microstates or statistical operators) for 
Q +  C. On the other hand, it is shown that in the Q+ Q case the essence of 
quantum correlations are the conditional states (or statistical operators) of 
subsystem I and the reduced state Pn. Along these lines, the correlation entities 
(as a complete set of invariants) for the macrostates of the Q+ C system are 
derived, and it is shown that one can make an isomorphic transition from the 
~r-convex set of the latter to that of the hybrid macrostates (,Ok, Pk). Here flk is 
the conditional state of Q under the condition that Qk occurs on C, and Pk is 
a classical discrete probability distribution on K, taking the place of ,OH as the 
macrostate of C. This study indirectly throws new light on the nonseparability 
in the Q +  Q case by contrasting it with a well-understood separability in the 
C + C and Q + c cases. 

1. I N T R O D U C T I O N  

J a u c h  (1964 ,  1968) d e f i n e d  a c l a s s i ca l  s y s t e m  as a q u a n t u m  o b j e c t  o n  

w h i c h  o n e  c a n  m e a s u r e  o n l y  a n  A b e l i a n  se t  O c o f  H e r m i t i a n  o p e r a t o r s .  

F u r t h e r ,  h e  s h o w e d  t h a t  a n y  r e s t r i c t e d  se t  O '  o f  o b s e r v a b l e s  i n d u c e s  a n  

e q u i v a l e n c e  r e l a t i o n  - in  t h e  se t  S o f  a l l  m i c r o s t a t e s  ( s t a t i s t i c a l  o p e r a t o r s )  

o f  a q u a n t u m  s y s t e m  t h r o u g h  t h e  d e f i n i t i o n  

p - p ' ,  p , p ' ~ S ,  i f  V A c O ' :  T r A p = T r A p '  (1) 

T h e  p h y s i c a l  m e a n i n g  o f  --  is " i n d i s t i n g u i s h a b l e  b y  m e a s u r e m e n t  o f  a n y  
o b s e r v a b l e  f r o m  O ' . "  

J a u c h  p r o v e d  t h e  f o l l o w i n g  t h e o r e m .  
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Theorem on Induced tr-Convexity. The set of classes S / ~  is ~r-convex 
due to the o--convexity of S via arbitrary class representatives: if C~, C2, �9 �9 �9 
S / -  (a finite or countably infinite set of classes), and w~>0, w2> 
0 , . . . , ~  i w i = l ,  then also Yi wiC~S/ - .  To evaluate ~i w~Cg, one takes 
arbitrarily pl ~ C1, P2 c C2, �9 �9 and ~ w~C~ is the equivalence class to which 
Yi wipi belongs. 

Jauch called the equivalence classes (elements of S / - )  for a classical 
system macrostates. 

In a recent investigation of Jauch's approach to the quantum theory 
of measurement (Herbut, 1986), Jauch's set O c for a classical system was 
given the more specific form of yon Neumann (von Neumann, 1955, Chapter 
V, Section 4) 

OC(B~ { k~K bkQk:Herm'~ Qk = 1 fixed} (2) 

where Qk are the eigenprojectors of the basic observable 
Bo = ~ b~ ( k ~ k ' ~ b ~ 1 7 6  

k c K  

The set OC(Bo) consists of all functions of Bo that are Hermitian operators. 
In an attempt to make Jauch's approach less unrealistic, states of the 

quantum system (Q) and the classical object (C)  were envisaged (Herbut, 
1986) that were distant, i.e., in which only coincidence measurements were 
performable. More fully stated, only Hermitian operators of the form A |  B, 
A any observable for the quantum system, and B ~ OC(B0), were assumed 
to be measurable on Q +  (7. This set of observables was denoted by O |  
OC(Bo). Applying Jauch's equivalence relation (1) with O'=-O| to 
the microstates of Q + C, the macrostates were determined. This, of course, 
extended the nonmeasurability of those Hermitian operators that were 
outside O| from the distant to all states of Q +  C. We have a clear 
physical understanding of this assumption only for states in which Q and 
C are sufficiently spatially separated, though they may have interacted in 
the past and now contain distant correlations as a consequence [see the 
last section in Vuji~i6 and Herbut (1984)]. It may be advisable to restrict 
the use of the Jauch-type approach at issue to distant Q +  C states. [In 
Herbut (1986) the distant microstates were the states of Q+C after the 
measurement interaction has ceased. Jauch's explanation of collapse, i.e., 
its disappearance in terms of the macrostates, was found to hold formally 
for most general measurements.] 

To introduce the subject of the investigation in this paper, the correla- 
tions are given a definition and are analysed for the Q + Q case in the next 
section because in the approach adopted, the Q + Q case is more basic than 
the Q + C  one. 
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In Section 3 an initial discussion of distant correlations in the Q + C 
case is presented. It gives rise to a relevant mathematical problem. This is 
solved in Section 4. In Section 5 the main result, expressing the macrostates 
of Q +  C in terms of the basic distant correlation entities, is derived. In 
Section 6 separability in the cases C + C and Q +  C is discussed. 

2, CORRELATIONS IN THE Q +  Q CASE 

2.1. Coincidences 

We assume that we have two quantum systems I and II. Let p be their 
general state (statistical operator). Let P be an arbitrary event (a projector) 
for I and Q an arbitrary event (a projector) for II. The measurement of 
P |  Q is called a coincidence measurement. The probability of its result 1 
is 

TrL,,(P| p (3) 

Since ( P |  and ( I |  commute, we can apply to (3) the usual 
factorization into the absolute probability of the occurrence of (1 | Q) in 
p, and the conditional probability of the happening of P under the condition 
that ( I |  took place in p: 

Tru , (P |  p = (Tr~Qp,,)- Tr,P[(TriiQPn) -1TrH(I| O)p] (4) 

Here PH -= Tr~ p is the reduced state (statistical operator) for II, and it is 
assumed that TrnQpu > O. 

The operator TrH(1 | Q)p is a positive operator in the state space gE~, 
as immediately seen from 

vl > ~ ffffl: (~b[Tr,,(1 | Q)p]~b) = Tr,,i,([$)($]| Q)p >- 0 

[a special case of  (3)]. Further, 

p~( Q ) =- (TrH QpH) -~ TrH(1 | Q )p (5) 

[the entity in the square brackets in (4)] obviously implies Yr~p~(Q)= 1. 
Hence, (5) defines a statistical operator for I. We call it the conditional state 
under the condition that (1 |  Q) occurred in p. Note that pl(1) = p~-= TrH p 
is the reduced state for I. 

The conditional state pI(Q) was utilized in previous work (Herbut and 
Vuji~i6, 1976, Section 6.B). It is also recognizable in the work of Ozawa 
(1984, Lemma 2.1). 

It is an important fact that every two distinct states of I+  II can be 
told apart by a coincidence measurement. [Historically, this goes back to 
Furry (1936).] More precisely, 

V p # p ' ,  3 ( P |  Tr~,II(P@Q)p#Tr~,n(P| (6) 
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[It is straightforward, but somewhat lengthy, to prove (6) ab contrario, 
starting with a basis in Yg~ and one in YgH.] The following result is an 
immediate consequence of (6) and (4). 

Corollary 1. If p r p' but PH -= Tr~ p = P~i ~ Tr l  P ' ,  then there exists an 
event Q for II such that 

p~(Q) # p~(Q) (7) 

where the lhs and the rhs are defined through (5) by p and p', respectively. 
Corollary 1 implies in turn: 

Corollary 2. If p # p '  but pi=p'~, i = I ,  II (the reduced statistical 
operators), then 3Q, a projector for II, such that 

pI(Q) # p~(Q) 

Clearly, in view of (4) and Corollaries 1 and 2, the conditional states 
implied by an arbitrary composite state p can be considered, mathematically, 
to be the essence of the correlations in it. But physically this has meaning 
only when the coincidence measurements P |  Q can actually be performed. 
If  I and II are spatially close to each other, the subsystem measurements 
of P Q  1 and 1 | Q, making up, with the help of some coincidence arrange- 
ment, the coincidence, cannot be carried out because the measuring instru- 
ment is bound to affect also the other subsystem. Therefore, the physical 
meaning of (4) for nondistant states p is dubious, and it is wise to restrict 
oneself to distant states. Hence, we say that the conditional states p~(Q) 
are the essence of the distant correlations in a distant state p. 

Subsystems I and II play symmetrical roles in the Q +  Q case at issue. 
Hence, the relation symmetrical to (5) gives Pu(P), the conditional states 
for subsystem II. 

2.2. The Special Case of Pure Distant Composite States 

If p is a pure distant state [6)(61, and one takes for Q any elementary 
event (atom) Ir162 then (5) gives, as is is easily seeen, a pure state 

p , (Q)  = ]r162 

and (5) itself can be replaced by 

Ir = <r162 
Here (- �9 �9 l" " ")) stands for the partial scalar product over ~ u  (the counterpart 
of TrH), and I I -  �9 �9 II denotes the norm (cf. Herbut and Vuji~i6, 1976, Appendix 
1). 

Since (r Aa[~) defines an antilinear mapping A a of ~CII into ~ ,  
it is suitable to replace [6) by A a in studying the distant correlations inherent 
in 16) (Herbut and Vuji~i6, 1976; Vuji~i6 and Herbut, 1984). 
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It has been shown (Herbut and Vuji~i6, 1976; Vuji~i6 and Herbut, 
1984) that not only is the above state [~O)(~O[ the conditional state of I under 
the condition of occurrence of [~p)(~p[ in the state 14>), but also vice versa, 
Ir162 is the conditional state of II under the condition [q~)(4J[ in [~b)if and 
only if 

EI,p>< l, PII] = 0 

or, equivalently, []r PI] =0. In this case ]~b)(tp[ and [~p)(~p[ are called 
twins. They are related by [qJ)= U~Ir , where U~, the correlation operator 
implied by I~b), is obtained as the antiunitary polar factor of A~: 

A~ = U.pl( 2, PlI -= Trll~b)(~bl 

3. CORRELATIONS IN A DISTANT MACROSTATE OF Q + C 

Returning to the states p of the Q + C case, we investigate the subsystem 
states pn and the conditional states PI(Q) of p. 

Theorem 1. Let S be the o--convex set of all microstates (statistical 
operators) of Q +  C, and let - in S be defined by (1) with O'-= O| 
[of. (2)]. 

(A) Any two equivalent microstates p and p' imply through (5) for 
any event (projector) Q~ OC(Bo) the same conditional state pI(Q). In 
particular, the reduced states for I coincide. 

(B) I f p - p ' ,  p ,p 'ES,  and pil-=Trip, p~i-=Trip', then pn and P~I are 
equivalent via (1) with O'-=OC(Bo). 

Proof. (A) Let ]r gg~. Then it follows from (5) that 

(~Olp,(Q)]~) = (Trii Op,,) ' Tr,.~,(lq,)(~0l| O)p (8a) 

($[p~(Q)[q') = (Trli OP~I)-' Tri,ii(lqJ)($[@ Q)p' (8b) 

Since Trn QpII = TrI.H(1 | Q)p, Tr,, Qp~I = Trl,n(1 | Q)p', and (1 | Q), (l$)A 
($1| Q) ~ O| the rhs of (8a) and (8b) are equal. The arbitrariness 
of [q/) then gives pI(Q) = pi(Q) as claimed. 

(B) Let B ~ OC(Bo). Then ( I |  O| and 

Tr,, Bp,,=- Tr,.,]( l | B)p =Tr, .n( l@B)p '=-Trn Bp~, [] 

Let Sn be the o--convex set of all microstates in Y(~I, and - the 
equivalence relation in it defined by (1) with O'=-OC(B0). As seen from 
Theorem I(B), elements from SI~/-  are subsystem states of C in a distant 
macrostate of Q + C. 

One wonders what the o--convex structure of S n / -  is. Would it be 
possible to make an isomorphic transition from SH/~ into some o--convex 
set that we know well, and the elements of which are single elements and 
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not classes of  entities? Since {Qk: k ~ K} are practically elementary events 
(atoms) for C, the o--convex set S==-{pk:Pk>--O, k6K;  ~k,~KPk,=l} of 
discrete probability distributions on K with 

Vk6K:  pk=--Trl,n(l| 

appears to be relevant and promising in this respect. The o--convex set s is 
what is called the classical discrete (CD) case. 

This question is settled in the next section. 

4. THE ROLE OF THE CD CASE 

In view of definition (2) of  OC(Bo), one can obviously replace the latter 
in the equivalence relation (1) in the set of  microstates S of a classical 
object by {Qk'. k~ K}. 

Theorem 2. Let S be the o--convex set of  all statistical operators p of  
a classical object, and let 

p~p '  if Vk~K: TrpQk=Trp'Qk (9) 

define an equivalence relation in S. The quotient set S / -  is a ~r-convex set 
(according to the theorem on induced convexity). Let, on the other hand, 
s be the o'-convex set of  all probability distributions {Pk: k~K}  (Vk~ 
K:pk>-O, ~kEKPk=l) on K. The map f ' : S ~ s  giving pk~f ' (p) that  is 
determined by 

V p c S ,  Vk~K:  pk=--TrpQk (10) 

induces an isomorphismf of the o--convex set S / -  onto the o--convex set s. 

Proof Clearly, Y'kEK pk=Trp(Y'k~K Qk)=Trp = 1, hence f '  is a map 
of S into s. Let Pk C S be arbitrary. We take Vk ~ K:  [~k) C R(Qk) (the range 
of Qk), (q~klq~k)= 1, and we construct p =-Y.k~I~ Pkl~k)(q~kl ~ S. Then f '  maps 
p back into Pk. Hence, f '  is a surjection. Definition (9) obviously can be 
construed as saying that p - p '  if and only if f ' (p)  = f ' ( p ' ) .  Thus, f '  induces 
a bijection f of  S / ~  onto s. 

Further, let p = ~i  wipe, p ~ S, V i: p~ c S, w~ > 0, Y~ w~ = 1. The applica- 
tion of f '  gives 'q'k ~ K:  p~k i) =-- Tr P~Qk. Then, denoting f ' ( p )  by Pk, we have 
Vk ~ K:  Pk --- Tr PQk = Y.~ w~p~k n" Consequently, f '  is a homomorphism of the 
tr-convex set S onto the o--convex set s, and f is a homomorphic  bijection 
of S / -  onto s. 

Finally, for f to be an isomorphism, as claimed, also the inverse map 
f-~ taking s onto S / -  must preserve the tr-convex combination. This is 
always true for a homomorphic  bijection in a set closed under an operation: 
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if f ' ( p ) =  ~i wif '(pi),  V i: wi > 0, ~i w~ = 1, then it cannot happen that p 
~"i WiPi, because f ' (~ i  W i p i ) : ~ i  wif'(Pl)" [] 

We call Pk, the elements of s, the CD macrostates. Evidently, if two 
microstates p and p' of  a classical object are equivalent [see (9)], then the 
corresponding average values of any B c OC(Bo) are equal. Thus, one can 
speak of the average of B in a macrostate (element of S/--) .  

When the isomorphic transition f takes the quantum macrostates into 
the CD ones, the observables B become the CD variables bk [cf. (2)]. 

Corollary 3, The isomorphism f of Theorem 2 does not change the 
expectation value of any measurable Hermitian operator B ~ OC(Bo): 

Vp c S: Tr pB = ~ pkbk 
k~K 

where pk is given by f ' ( p ) .  

Proof. The spectral form of B [cf. (2)] and (10) give immediately 
Tr pB = Y~k~K pkbk a s  claimed. [] 

Let us return to the results of Theorem 1 concerning the correlation 
entities in a macrostate p of  Q + C. Theorem 2 enables us to replace the 
class of equivalent reduced statistical operators PH of p by the CD macro- 
states Pk : 

V k c K :  pk=---TrHQkPn~Tri,H(l@Qk)p (11) 

Further, in the set {pt(Q): Q c  ~ ( ~ n )  c~ O~(Bo)} of all conditional 
states for the quantum subsystem [~(~fl~) being the set of all projectors in 
Y(~I] there is some redundancy, as the following result shows. 

Theorem 3. Let Q c ~(2ftt) ,  and Q ~ OC(B0). Then one can write Q = 

ks K bkQk, with 

f1 V k c K :  b k = - 8 ( k c K o ) ~  otherwise 

where K o =- {k: QQk = Qk}. I f p  is a microstate of Q +  C, and it implies, via 
(11), Pk as its CD macrostate for subsystem II, then, defining p(Ko)  =-- 

~,k~K o Pk, if p(KQ) > O, we have 

p~( Q ) = P~ y (12) 
kE(KQcnK) p ( K o  ) Pk 

where /~-= {k: Pk > O, k c K}  is the support of Pk, and 

V k c K :  pk=--p~(Qk)=pk~Trn(l |  (13) 
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We call {Pk: k c /~}  the set of basic conditional states of the quantum 
subsystem in a macrostate of  a Q + C system. 

Proof of Theorem 3. The claims about the CD variable b k corresponding 
to Q are obvious from (2). To derive (12), we insert Q =~k~K 6(kc  Ko)Qk 
on the rhs of  (5): 

PI(Q)=P(Ko) -1 E Tqi( l |  
k e KQ 

As seen from (11), for pk----0, k ~ K  o, Trn(l |  (because it is a 
positive operator).  For Pk ~ O, we insert the factor Pk/Pk to obtain (12). [] 

There are some interesting consequences of  Theorems 2 and 3. 

Corollary 4. The expectation value of any observable ( A |  
Y'k~K bkQk) e O| in any microstate p of  Q +  C depends on no other 
constituent of  p but the invariant entities Pk, { Pk: k e /~}  determined by p: 

(A|  y" bkQk'P) = k~K ~ bkpk Tq Apk (14) 

(if Pk = O, Pk may be undefined). 
Proof is obtained by immediate evaluation. 

Corollary 5. Let S be the ~r-convex set of  all Q + C microstates, and 
let - be defined through (1) with O' ~ O | O c (Bo). I f  p 7 c p' ,  and Pk, { Pk : k E 
/(} are the invariant entities corresponding to p, and p~, { p~: k ~ / ( ' }  those 
corresponding to p' ,  then either 3 k e  K: Pk ~Ptk and /o r  3k: k c / ~  n / ~ ' ,  

Pk ~ P~k. 

Proof. Since p~.p'  means that 3(AQ%k~K bkQk)eO| such 
that the lhs of  (14) for p and for p '  are distinct, the same is true for the 
rhs. This cannot be so unless the claim of Corollary 5 is true. [] 

Thus, considering the classes in S and their invariant entities Pk, { Pk: k c 
/(}, the latter reflect not only the "sameness"  within the former, but also 
their distinctness. This brings us to the conjecture that a macrostate of  Q + C 
should be expressible in terms of the invariant entities. 

In the next section we prove this conjecture. 

5. MACROSTATES OF Q +  C IN TERMS OF THE INVARIANT 
ENTITIES 

To begin with, we define a new set d~o: Let Pk be an arbitrary CD 
probability distribution on K , / (  its support,  and {Pk: k c K }  arbitrary 
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statistical operators in ~ .  Defining tOk ~ 0 for those k values for which 
Pk = 0, we write this as M = {(pk, Pk): k e K } or briefly as M =- ( Ok, Pk). 
The set ~ o  is the set of  all such M. 

Now we introduce the operation of (finite or countably infinite) convex 
combinations in J /o ,  i.e., we make the latter o--convex. 

Let Wq > O, q = 1, 2 , . . . ,  ~qWq = 1, be an arbitrary sequence of statistical 
weights, and let {Mq: q = 1, 2 , . . . }  be an arbitrary sequence of elements of 
J//o. We define ~,qWqMq a s  follows: I f  Mq = (p(kq), p (q)) and M=-V~q wqMq = 
( Pk, Pk ) , then 

V k c K :  pk=---~ Wqp~ q) (15a) 
q 

�9 (k~_(q) (15b) P k ~ - - ~  Wq P k  
q 

where the weights w~ k> are determined by 

�9 ( k ~ _ . . ,  ~ ( q ~  (15c) Vq: Wq ~ W q P k  / F k  

[they are statistical weights due to (15a)]. Ifpk = 0, then p(k q) = 0, q = 1, 2 , . . .  
[see (15a)], and (15c) is understood to give W(qk)=O, q= 1 , 2 , . . .  (though 
p~l is undefined). 

Next, we define the set O x v  consisting of all pairs (A, bk), where A 
is any Hermitian operator in ~ ,  and {bk: k e  K} are real numbers such 
that ~k~K bkQk is a Hermitian operator in ~ n .  

Finally, we define the expectation value of any (A, bk) ~ O x v in any 

M = ( P k ,  P k )  C J/[O: 

((A, bk), M> =- Y~ bkPk Tri Apk (16) 
k e K  

It preserves the o-- convex combination. Namely, making use of  (15b), ( 15 c), 
(16) gives 

((A, bk), (Pk,Pk))= Y ~ W(qk)bkPk Tr, Ap(k q) 
q k ~ K  

= Y. Wq Y. bkP(k q> Tr, Ap~ q) 
q k c K  

= ~ Wq((A, bk), (p~k q), p(kq))> 
q 

Now we are prepared to resort to the main result of  this investigation. 
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Theorem 4. Let S / ~  be the set of all macrostates of Q + C. For each 
of its elements C there exists one and only one M ~ ego such that each 
(A| bkQk)~O| has the same expectation value in C as in 
M; and vice versa, for each M e eg o there exists precisely one C ~ S / -  
fulfilling this condition. This bijection of S / -  onto ego is obtainable by 
taking the invariant entities of an arbitrary element p ~ C, and by writing 
them as M. The bijection is an isomorphism of the o--convex set S / ~  onto 
the o--convex set ego. 

Proof. Let C ~ S / - ,  p c C, and let M =- { Pk, Pk} C ego be made up of 
the invariant entities of p. In view of their invariance within C (cf. Theorems 
1 and 2), and due to Corollary 5, this transition from C to M is an injection 
of S / -  into ego. It is actually a bijection, as seen by taking an arbitrary 
M=---(pk, pg)CegO, by choosing for VkEK:lq~k)~R(pk), and by con- 
structing 

p-= E pkPk| 
k~/~ 

Evidently, p ~ S, and its invariant entities lead back to M. 
The element C e S / -  and the corresponding M m ego give the same 

expectation value for each observable from O |  O~(Bo), as is obvious from 
(14) and (16). For C there is no other M'm ego with this property, or else 
C', corresponding to M',  would give the same expectation value as (7, and 
this would mean C = C'. Thus, the first two claims are established. 

If C=~q wqCq and p ~  C~, p2~ C2,..., p=-Y.q wqpk, and we denote 
by M1, M 2 , . . .  the corresponding elements of ego, then, due to the fact 
that the expectation value preserves the o--convex combination both on 
S / -  and on ego, Y,,qwqMq gives the same expectation value for all elements 
of O |  O ~(B0) as C. Hence, as follows from the first two claims of Theorem 
4, it is ~q wqMq that corresponds to C. Thus, the correspondence is 
homomorphic. Since a homomorphic bijection of a o--convex set onto 
another is an isomorphism (cf. the end of the proof  of Theorem 2), Theorem 
4 is proved. �9 

6. SEPARABILITY IN THE C +  C AND O +  C CASES 

To understand the nature of the correlations in the 0 + C case, let us 
compare it with that in the C + C case. 

Let G and K be two countable sets of elementary events, and p(g, k) 
an arbitrary probability distribution on G • K. Let Pk =- ~g~ P(g, k) be its 
right marginal distribution, /~ the support of Pk, and V k c / ~ :  p(glk)=- 
p(g, k)/pk the conditional (left) probabilities. Let us further gather into 
classes those k values that give equal conditional probabilities: /~n--- 
{k:pk>O,p(glk)=-p(g[n ) indep, of k}, n = l , 2 , . . . ,  giving E~/~n=/~.  
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Finally, let 

and 

Vn wn =- Y~ pk=p(g~.) 
k ~ K  n 

Vn, V k e K :  p(kln)~-~(keI(n)pk/w,. 

[The w, are statistical weights, the p(k In) are probability distributions.] 
Then 

p(g, k) = ~ wnp(gl n)p(kl n) (17) 
n 

is the right canonical decomposition ofp(g,  k). It has the following properties: 

(i) The p(k I n) are disjoint, i.e., n ~ n ' ~ V k ~  K: p(k I n)p(k I n') =0. 
(ii) The P(gl n) are distinct, i.e., Vn ~ n': 3g E G: P(gt n) ~ P(gl n'). 

(iii) The terms p(gln)p(kln) that are mixed in (17) are separable 
(factorizable) describing statistical independence of G and K. 

It is noteworthy that (17) is the unique decomposition of p(g, k) 
satisfying (i)-(iii). This can be proved in a straightforward way by writing 
down another such decomposition, and by inferring, step-by-step, that the 
entities in it coincide with the corresponding entities in (17). 

In a strict sense separability is synonymous with statistical indepen- 
dence (cf. Clauser and Home,  1974). I f  p(g, k) describes an ensemble of 
composite events (g, k), it is only the subensembles P(gl n)p(kl n) that are 
thus separable. In the latter, the probability of an arbitrary event P(g) (the 
characteristic function of  a subset P of G) is ~'.g~vp(gln) before the 
measurement of an arbitrary event Q(k) (the characteristic function of a 
subset Q of K),  and it is unchanged after the measurement [in the suben- 
semble corresponding to the result Q(k) = 1]. 

In an arbitrary p(g, k), however, the corresponding probabilities are 
~gep~,kcKp(g, k) before the measurement and ~gEP~keop(g,k)/p(Q) 
after the measurement. They need not be equal. 

Nevertheless, one can still call the correlations in p(g, k) separable in 
view of the fact that the ignorance interpretation of the mixture (17) is tenable. 
In other words, it is a subjective lack of knowledge that fails to place a 
particular composite event into one [and only one, due to (i)] of the 
subensembles enumerated by n in (17). In reality, one can argue, the 
composite event does belong to one of the subensembles, and hence the 
true probability of P(g)  is actually independent of whatever one does on 
subsystem II. 

This was the C + C (both discrete) case. Now we show that the entire 
argument is valid mutatis mutandis for the Q +  C case in the hybrid-state 
formalism. 
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Let (Pk, Pk) be a macrostate of Q+C, I( the support of Pk, /(n-= 
{k: Pk > O, Pk =- Pn indep, of k}, n = 1, 2 , . . . ,  giving Y~/(n =/~. Finally, let 

Vn: w.=- ~, pk=p(K~) 

and 

Then 

Vn, V k ~ K :  p(k ln)=3(k~Kn)pk/wn 

(Pk,Pk) =~ w,(pn,p(kln)) (18) 
t l  

[Note that the conditional states on the rhs of (18) are 0 for k ~ / ( , ,  and 
all equal to p, otherwise.] Decomposition (18) can easily be checked with 
the help of (15a)-(15c). 

Property (iii) of (18) consists in the fact that there is only one nonzero 
conditional state in each term on the rhs (instead of distinct ones for distinct 
k values). 

Analogously as in the C + C  case, one proves that (18) is the only 
decomposition of (pk, Pk) satisfying (i)-(iii). 

The discussion of separability is now literally transferable from the 
C + C t o t h e  Q + C c a s e .  

Finally, in the Q + Q case, in contrast, one has in general nonseparability. 
Actually, only if p--pt@Pii does one have statistical independence of 
subsystems I and II and hence separability. If p ~ ,  Wnp~n)@p~ ) with at 
least two distinct nonzero terms, or is more intricate than that, the concept 
of separability in the broader sense is not applicable consistently, because 
the ignorance interpretation of the mixture fails to be consistent (cf. 
Fraassen, 1972). 

7. C O N C L U D I N G  R E M A R K S  

The very fact that one can perform both the it-convex combinations 
(or the inverse decompositions) and the evaluation of expectation values 
(comprising also the probabilities of events) in terms of the correlation 
entities of macrostates (the hybrid states) of the Q + C system, as proved 
in this work, should help to shed new light on the nature of quantum 
nonseparability. The importance of the latter has been established both 
theoretically and experimentally in distant correlation theory (cf. Clauser 
and Shimony, 1978; Aspect et al., 1981, 1982a,b). 

Further, the hybrid, i.e., half quantum and half classical discrete, 
character of the new form (pk, Pk) of the macrostates can, it is hoped, help 
to set up a bridge between the quantum and the classical descriptions. 
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(There is, of  course, the additional step from the CD case to the CC--the 
classical continuous--one.) 

As to applications of  a Jauch-type hybrid macrostate formalism such 
as the one developed in this article, there are three obvious domains: 

(i) The quantum theory of measurement (Bohr repeatedly emphasized 
that classical apparatuses are indispensable in measurement). 

(ii) The quantum theory ofa preparator, i.e., of a classical arrangement 
that, interacting with a certain quantum system, brings about a 
quantum state of  the latter. 

(iii) The structure of some quantum systems, such as molecules (which 
depend on the environment, with the latter, in turn, described 
most practically by classical physics; cf. Primas, 1983). 
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